| Write a recursive function which returns the value of A(m,n).  This function grows very quickly in value. This function A(m,n) is defined as:   if m=0 then n+1 if m>0 and n=0 then A(m-1,1) if m>0 and n>0 then A(m-1,A(m,n-1))   
| INPUT m     n     | OUTPUT |  
| 0 | 0 | 1 |  
| 0 | 1 | 2 |  
| 0 | 2 | 3 |  
| 0 | 3 | 4 |  
| 0 | 4 | 5 |  
| 1 | 0 | 2 |  
| 1 | 1 | 3 |  
| 1 | 2 | 4 |  
| 1 | 3 | 5 |  
| 1 | 4 | 6 |  
| 2 | 0 | 3 |  
| 2 | 1 | 5 |  
| 2 | 2 | 7 |  
| 2 | 3 | 9 |  
| 2 | 4 | 11 |     
| function Ackermann(m, n : Integer) : Integer; begin     if m = 0 then         Result := n+1     else if n = 0 then         Result := Ackermann(m-1, 1)     else Result := Ackermann(m-1, Ackermann(m, n-1)); end;   {---}    for var i := 0 to 3 do      for var j := 0 to 4 do      begin       WriteLn( Ackermann(i,j) );      end; | 1,2,3,4,5, 2,3,4,5,6, 3,5,7,9,11, 5,13,29,61,125  |